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ABSTRACT

A multiaxial differential mode! is proposed for pure flow in orthotropic polycrystalline ice. The
derivation of the constitutive equations is based on thermodynamics with internal state variables. The
model equations consist of the equations-of-state and evolution equations for the internal variables and a
nonelastic deformation variable. The internal state of the material is described in terms of a scalar and a
second rank tensor, which represent isotropic and kinematic hardening in the material, respectively. The
nonelastic deformation-rate tensor is additively decomposed into transient and steady-state components.
The orthotropic texture of ice during incompressible flow is characterized by five material parameters
which define appropriate measures of the thermodynamic forces and deformations. Cbnventionally used
mechanical tests under constant-stress creep and constant strain-rate loading are sufficient to determine
these parameters. A

1. INTRODUCTION

The mechanical behavior of ice is rate and temperature dependent since it is generally present in
nature at very high homologous temperatures. Solutions to complex problems in applied ice mechanics,
involving muitiaxial states of stress and which recognize this rate-dependence, are based on a
generalization of Glen's (1955) power-law model of steady-flow that assumes polycrystalline ice to be
isotropic and incompressible. Such a generalization has been proposed for glacier-flow problems by
Palmer (1967) and applied to ice-indentation problems by Ponter et al. (1983).

Ice, however, is not isotropic in many engineering problems. The most prevalent polymorphic form
of ice, lce-lh, has a hexagonal crystal structure (Hobbs, 1974). The oxygen atoms are all concentrated
along basal planes perpendicular to the principal hexagonal axis, called the c-axis. Single crystals of this
type of ice are cross-anisotropic or transversely-isotropic because of hexagonal symmetry about the c-
axis. The c-axes of different crystals in polycrystalline ice can exhibit various degrees of alignment,
thereby imparting a definite crystallographic texture or fabric to the solid.

The individual crystals in polycrystalline ice may be granular, columnar, or in one of many other,
generally, less common forms. Granular ice is typically isotropic. On the other hand, the texture of
columnar ice may be isotropic, transversely-isotropic, or more generally anisotropic. According to the
classification of fresh-water polycrystalline ice by Michel and Ramseier (1971), transverse-isotropy is
exhibited by S-2 ice, which is commonly encountered in ice engineering problems, while more general
anisotropy is exhibited by S-3 ice. The power-law model of steady-flow has been generalized for



orthotropic and incompressible material behavior and applied to ice-indentation problems by Shyam
Sunder et al. (1987).

These multiaxial models of flow, however, neglect the transient component of deformation which
can be important in a broad range of ice mechanics problems (Gold, 1977; Sinha et al., 1987). In
particular, the transition from ductile to brittle behavior in polycrystalline ice is generally initiated during
transient flow. For example, appreciable transient flow, comparable in magnitude to the elastic
deformation, precedes failure in ice under uniaxial tension (Schulson et al., 1984; Schulson, 1987).
Second, transient-flow is essential for predicting "first-crack occurrence” or "crack nucleation” during
uniaxial compressive loading (Sinha, 1982; Shyam Sunder and Ting, 1985). Finally, at loading rates of
engineering interest (viz., 10 to 107! s), transient-flow may be followed by strain-softening without a
region dominated by steady-flow because of damage due to distributed cracking. Similarly, primary creep
may be followed by tertiary (accelerating) creep without appreciable secondary (steady) creep under
constant-stress loading. However, existing models based on damage mechanics are incapable of
characterizing the ductile-to-brittle transition in ice since they ignore the contribution of transient
deformation to the total deformation response of the material. This is illustrated by Sj3lind’s (1987)
formulation which does not account for the contribution of transient deformation to the thermodynamic
free energy and the dissipation potential function.

A uniaxial differential model which explicitly accounts for transient-flow in polycrystalline ice has
been presented by Shyam Sunder and Wu (1988). The model satisfies the dimensional requirements
identified by Ashby and Duval (1985). Correspondence between constant-stress creep and constant
strain-rate response, observed by Mellor and Cole (1982, 1983), has been established. The uniaxial
modie contains a total of six parameters and follows experimental data on the creep of fresh-water
polycrystalline ice obtained by Jacka (1984), Sinha (1978), and Brill and Camp (reproduced in Sinha,
1979).

This paper presents a multiaxial generalization of the uniaxial differential model for flow in
orthotropic polycrystalline ice. The derivation of the constitutive equations is based on thermodynamics
with internal state variables (Coleman and Gurtin, 1967). The model equations consist of the equations-
of-state and evolution equations for the internal variables and the nonelastic deformation variable. The
internal state of the material is described by two internal variables: a scalar and a second rank symmetric
tensor which represent, in an averaging sense, structural changes occurring on the microscale. Such
approxvimate description of the internal state has been widely adopted; an example being the constituive
model for the hot-working of metals developed by Brown et al. (1987). The total deformation-rate tensor is
additively decomposed into elastic and nonelastic components. The nonelastic component is further
additively decomposed into steady-state and transient components.

The equations-of-state, relating the state variables and their conjugate thermodynamic forces, are
derived from an admissible thermodynamic (Helmholtz) free energy potential. The Helmholtz free energy
consists of contributions from : (a) the elastic-deformation tensor; (b) an anelastic-deformation tensor
associated with the elastic back-stresses generated during kinematic hardening; and (c) a scalar measure



associated with drag-stresses generated during isotropic hardening.

The dissipation for steady-flow is represented by an independent potential function from which the
corresponding flux quantity is obtained by imposing normality. The dissipation for transient-flow is
characterized by a complex potential function that seeks to model the coupling between isotropic and
kinematic hardening. It is postulated that the transient deformation-rate and the fluxes for the internal
variables are derivable from the complex potential by imposing normality with respect to the associated
thermodynamic forces.

Material or texture anisotropy effects during transient- and steady-flow are modeled orthotropically
by defining equivalent values for the thermodynamic force tensors in a manner analogous to the Hill-
criterion of plastic yield. The five parameters which are used to describe the orthotropic texture of
polycrystalline ice can be estimated from constant-stress creep or constant strain-rate tests under steady-
flow conditions. Conventional uniaxial compression testing is sufficient to determine these parameters.

2. THERMODYNAMIC FORMULATION

Thermodynamic Laws and the Clausius-Duhem Inequality.-- In Coleman annd Gurtin's (1967)
approach, deformations are viewed as processes rather than states of equilibrium or near-equilibrium. A

thermodynamical process is specified directly by constitutive functions defined on material points of the
continuum. The assumption is that a set of physically significant thermo-mechanical quantities can be
defined on any particle in a material body. The particie may be visualized as a microscopic cell, which is
itself a continuum in the microscopic description. Since it may consist of highly heterogeneous entities,
e.g., an aggregate of grains, it must be large enough to represent the average behavior of the aggregate,
and yet small enough compared to the dimensions of the continuum (e.g., solid body) to be associated
with the material poiht. To these cells is applied the homogenization process whereby the locally
heterogeneous medium is replaced by a homogeneous medium. The thermo-mechanical state of each
material point can then be described by variables representing the average behavior of the cell. These
include independent (observable) state variables like the temperature, the temperature gradient and the
strain tensor, and internal variables which generally characterize, in an approximate sense, the various
history-dependent mechanisms of structural changes.

Only small strains and rotations are considered in the present model. If only isothermal processes
are considered, and if thermal dissipation is neglected, the response of the material at any instant is
governed by (i) the independent variable, i.e., the total strain tensor, ¢; (i) the nonelastic strain tensor, [
and (iii) the internal variables, i.e., the second rank symmetric tensor associated with kinematic
_hardening, o, and the scalar measure associated with isotropic hardening, p. Hdwever, the nonelastic
strain tensor represents a macroscopic deformation due to internal structural changes and is not regarded
as a state variable. It is determined from a constitutive function which is dependent on the internal state
variables. Given this and the additive decomposition of the total strain-rate into elastic and nonelastic
components, the total strain tensor may be replaced by the elastic strain tensor €, as a state variable.

Thus, the state variables are given by the list {e,, o, p}, or alternatively by the conjugate variables {g, R,



B'V}, where ¢, R, and B'V denote the stress tensor, the back-stress tensor and the scalar drag-stress,
respectively. The Helmholtz free energy and the dissipation potential, from which all the model equations
are derived, are functions of these state variables.

The first law of thermodynamics is an energy conservation equatin. For small strains and rotations
the local form of this law balances the rate of internal energy per unit volume pU , the stress power g:g,
the divergence of the heat-flux vector div q, and the heat supply per unit volume pr as follows:

pU =g :e + pr-divg (1

where p is the mass density, and gis the strain-rate tensor. The symbol "’ denotes tensor contraction, i.e.,
A:B= AijBi-, while the superposed dot denotes the material time derivative. The second law, in the form
of the Clausius-Duhem inequality, asserts that the rate of entropy production per unit volume pYy is non-
negative:

pY = pn - pr/T + divig/T) =2 0 (2)

where pn is the rate of entropy increase per unit volume and T is the absolute temperature. By a partial
Legendre transform, the dependence of the internal energy on entropy is replaced by the dependence on
absolute temperature. This yields the Helmholtz free energy (per unit mass) A = U - Tn. Applying this
transformation to Eq. (1) and substituting the result in inequality (2) gives rise to the alternative form of the
Clausius-Duhem inequality (called the reduced dissipation inequality in the literature):

pA+MT) + g : & - g+ gradlogT) = pTy = O (3)

where the single dot between two vectors denotes the vector dot product. For an isothermal process, T=
0. Furthermore, if the thermal gradient is negligible, i.e., the temperature field is approximately
homogeneous within the microscopic cell defining a particle in the material, inequality (3) can be re-
written in the following form:

PA +G0:E = O (4)

]

Assuming that A = A(e,, o, p) is a smooth function of the state variables, the following equation
must be valid for admissible thermodynamic processes:

Noting that €= £, + £, = £, + £, + £,, Where the last two quantities denote respectively the transient and
steady-state components of the nonelastic strain-rate, inequality (4) and Eq. (5) can be combined to yield:
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if £, can be varied independently of the internal and the nonelastic deformation variables, the above
inequality is satisfied for arbitrary values of the elastic strain-rate as long as the following relationships
hold:
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g:g, =6,20 : (9)

[c:g-p:al- pP=P=06,20 (10)

where ¢tp denotes the dissipative power per unit volume due to the complex process of transient-flow.
Equation (7) is one of the equations-of-state, while inequalities (9) and (10) represent thermodynamic
restrictions on the internal processes. Inequality (9) states that the driving force associated with steady-
flow is the stress tensor. On the other hand, transient deformation results from structural changes
represented by o and p. The tensor o may be considered as a recoverable anelastic (or delayed elastic)
strain associated with the elastic back-stresses generated during kinematic hardening. Analysis of
experimental data suggests that the transient strain is recoverable while the steady-state strain is
irrecoverable (Sinha, 1978). Consequently, the kinematic hardening variable is identified as the transient
strain tensor. Isotropic hardening as represented by p is taken into account through the dependence of
the complex dissipation potential on both internal variables, as described in Section 3. With the
equivalence between o and g,, inequality (10) then shows that the thermodynamic force driving transient
flow is the tensor ¢ - p JA/d o, while the driving forces for the individual kinematic and isotropic hardening
processes are the tensors p 0A/d o and p JA/dp, respectively.

Helmhoitz Free Energy Potential and Thermodynamic Forces.-- The Helmhoitz free energy (HFE)

repesents the stored energy of the material. The existence of the free energy compatible with the second
law of thermodynamics for rate-type viscoelastic and viscoplastic models has been established by Gurtin
et al. (1980). For intemal variable type of models, the free energy can be postulated in terms of the
identified deformation mechanisms and their coupling, if any (see e.g., Lemaitre, 1987). Such postulates



are maotivated by physical reasoning and experimental observations (see, e.g., llankamban and
Krajcinovic, 1987).

In this model, the HFE consists of the instantaneous free energy defined as the strain-energy
function corresponding to classical linear orthotropic elasticity. A second contribution, the anelastic free
energy, is defined as the strain-energy function correponding to the elastic back-stresses. The final
contribution, Ap(p), takes into account the energy storage in the material resulting from internal structural
changes due to isotropic hardening. The time-derivative of p is related to the equivalent transient strain-
rate as shown subsequently. The analytical expression for the HFE then takes the following form:

PA=1/2g,:D g, + 1/2A%: H o+ pA(p) (11)

where D is the orthotropic elastic stiffness tensor, H is a fourth-order transformation tensor for
incompressible and othotropic materials (derived in Section 3), and A* is a scalar constant which relates
equivalent values of the back-stress and anelastic-strain tensors, respectively.

Direct formulation of Ap(p) on the basis of physical models is complicated. The usual approach for
isotropically hardening plastic and viscoplastic materials is to assume that p is a measure of the
accumulated plastic strain and that isotropic hardening is a nonlinear function of p ( Chaboche and
Rousselier, 1983). The flux for p is obtained from a dissipation potential postulated on the basis of
experimental data. In simple cases, it is possible to reconstruct an explicit expression for the associated
free energy Ap(p}. A similar approach is adopted here as described in Section 3.

The thermodynamic forces are by definition conjugate to the state variables, as suggested by the
structure of the dissipative inequality (10). Using Eq. (11), the equations-of-state take the following form:

pa_A.=Q:§eE(_5 (12)
£q

§§=, *H:a=A'H:g =R (13)
A %A , :

—_— ._._EBV 14
=" (14)

where the product A*H : « is the the elastic back-stress tensor R, B' is a nondimensional scalar drag-
stress associated with isotropic hardening, and V is a stress-factor characterizing the viscous resistance
of the material. Equation (12) states that the stress tensor is the thermodynamic force associated with the
elastic-strain tensor, while Eq. (13) states that the back-stress tensor is the thermodynamic force
associated with the anelastic-strain tensor. It should be noted that the driving force for fransient-flow is the
stress difference tensor o4 = ¢ - R, as can be seen from Egs. (10) and (13). Finally, Eq. (14) states that
the drag-stress B'V is the thermodynamic force associated with isotropic hardening.

3. DISSIPATION POTENTIALS AND EVOLUTION EQUATIONS



Conceptual Formulation.-- The dissipation potential may be expressed as a function of either the
thermodynamic fluxes or the thermodynamic forces. It is possible to derive one representation from the
other via a complete Legendre transformation. A partial transformation will lead to both flux and force
quantities as variables. In the model, the dissipation potential is expressed as a function of the forces and
the flux quantities are obtained by imposing normality as in the classical theory of plasticity.

Thermodynamic requirements are automatically satisfied if the dissipation surfaces in the hyper-space
spanned by the forces are convex, nested, and contain the origin (see, e.g., Onat and Leckie, 1988).

The transient- and steady-flow components of deformation are considered to be independent.
Consequently, the dissipation potential ¢ is additively decomposed into two components, one for each
deformation mechanism, i.e.:

b=y + 0y ' » (15)

where 6, and Oy, are the dissipation potentials for steady- and transient-flow, respectively. Normality can
be applied separately to the two potentials, but not to the compound potential ¢. In the case of steady-
flow, normality is with respect to the associated force g, and ¢, is given by the Norton-Hoff type of
expression for the power-law. In the case of transient-flow, the existence of a potential with the normality
condition is postulated. This potential generalizes ¢, by replacing ¢ and V in ¢, by o4 and BV,
respectively. It represents a complex potential, i.e., it is a function of the two thermodynamic forces o
and B'V. Given this postulate, normality is imposed with respect to each of the thermodynamic forces to
obtain the corresponding flux quantities (Ziegler, 1983).

The derivation of the fluxes from the potentials is presented in the following, where for convenience
engineering notation in Cartesian coordinates replaces tensor notation. Thus, for example, the strain

vector is defined as € = [e,,, € sz]Tv where T denotes the transpose operation.

yy &2z Yxy' Yyz

Orthotropic Model of Steady-State Flow.-- To derive the relationship between the steady viscous
strain-rate vector g'v (flux) and the stress vector ¢ (force), an equivalent stress measure generalized for

pressure-insensitive orthotropic materials, i.e., with identical behavior in tension and compression, is
defined:

2=3/B[a,/3 (0, - 0,,)% +a,/3 C 0,,)% + /3 (0,, - 5,,)% +

Ceq yy)

2a40,,% + 2250, + 2850, 2 | ' (16)

with  chosen to be (a, + a,) so that Ooq = Fyy when the stress components are described by the vector g
= [0 Oyy 0000]T, i.e., the y-axis is chosen to be the reference direction. Equation (16) is similar in form to
that used by Hill (1950) to describe the plastic yield surface in metals possessing an orthotropic texture.
Since steady-state (viscous) flow in polycrystalline ice is incompressible, it is unnecessary to consider the
complex formulations of Reinicke and Ralston (1977) and Pariseau (1968) which seek to model the
combined effects of incompressible ductile flow and pressure-sensitive brittle behavior with a hypothetical



"vield" surface. The equivalent stress may be expressed in compact form using matrix notation as:
2 _ T
Ooq =3B Go (17)

where the stress-transformation matrix G is given by:

(a,+a3) -8, a3
3 3 D
(al+az) —az
3 3 9
(a,+a;)
G= ; (18)
2a,
SYM. 2a;
2a,

If steady-state viscous flow in polycrystalline ice is taken to follow Glen's (1955) power-law, a
scalar-valued dissipation potential of the Norton-Hoff type can be defined and expressed as: '

g N+1

¢v=.€°_as'ﬁ'— ’ . (19)

where N is the power-law index, Eso is a reference strain-rate (may be set equal to unity without loss of
generality), and V is a temperature-dependent factor representing the stress corresponding to the
reference strain-rate in the y-direction. The temperature dependence of the stress-factor V is
characterized by an Arrhenius relation (see, e.g., the review by Meilor, 1980):

V = V, exp(Q/NRT) (20)

where T is the temperature in Kelvin, V  is a temperature-independent constant, Q is the activation
energy, and R is the universal gas constant equal to 8.31 J mol”! K1, It should be noted that the
Arrhenius law is generally invalid at temperatures close to the freezing point (e.g., above -10°C).

Normality between the thermodynamic flux and force requires:

. L)
E,=Y7, 501 (21

where v, is a constant of proportionality given by (Ziegler and Wehrli, 1987):



v, =0, ( LT )t ‘ (22)

dg © —

Using Eqgs. (17) and (19), this constant is determined to be 1/(N+1). Noting this result, Eqs. (17), (19) and
(21) can be combined to yield the desired relationship:

€,/g,=AS"* ‘ (23)
where

A =3B (1N oeqN" , (24)
and

S$'=Ggo (25)

Note that S* is a pseudo-deviatoric stress vector for orthotropic materials. For isotropic polycrystalline ice
(le., a, to ag = 1), S* reduces to the conventional deviatoric-stress vector, Ggq feduces to the
conventional equivalent stress measure for isotropic materials, and Eq. (23) becomes the well-known
three-dimensional generalization of the power-law for the creep of isotropic materials, as presented by
Palmer (1967) for glacier-flow. Such a model can also be derived from isotropic tensor function theory

(see, e.g., Rabotnov, 1969).

It can be verified that the steady-state viscous process satisfies the dissipative inequality (9), i.e.,
o' &, = 0. Combining Egs. (23)-(25) with the inequality yields AT oeqN“, which is the dissipation
function ¢, > 0, as expected.

Evaluation of an equivalent strain or equivalent strain-rate is required, for example, to define the
free energy terms in Eq. (11) and to determine whether the material is being loaded or unloaded. Using
the hypothesis of energy equivalence, the relationship between the equivalent stress defined in Eq. (16)
and an equivalent strain-rate measure can be established. The rate of dissipation of energy per unit
volume, ¢,, is given by: ,

6,=0"&g, (26)
Application of the hypothesis then yields:
Te. = £ 27)
g &y Geq ev,eq (

where év,eq is the equivalent steady-state strain-rate. The steady-state strain-rate vector in Eq. (27) can
be eliminated using Egs. (23), (25) and (17) in succession to yield:

Ey,0q Eo = (Ggq VN (28)
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Given the equivalent stress measure, Eq. (28) can be used to compute the equiVaIent steady-state strain-
rate. Alternatively, an explicit expression can be derived by first eliminatihg (Cyx - oyy)z, ....... , G2 In Eq.
(16) through the use of Eq. (23) and then substituting the resulting expression for Oeq in Eq. (28). The final
expression can be epressed in compact notation as follows:

€yeq=PB3E,HE, (29)

where the strain-rate transformation matrix H is given by:

3a,+a,)a,’ -3a,a,a, -3a,a,a,
a-Z a'Z a'Z
3(a1+az)a32 —3ala2a3 0
a*? a*? =
Na,+a,)a?
H= Y (30)
i
(2a,)
1
SYM. N
1
. (7ay
L -

with a* = a,a, + a;a, + a,a,. Equation (29) reduces to the conventinal equivalent strain-rate measure for
isotropic materials if the orthotropic material parameters a, to a5 = 1. Moreover, when loading is in the
reference direction, & and Eq. (28) becomes the power-law for uniaxial loading in the reference
direction.

veq = Evyy

It should be remarked that H is not the inverse of G. Furthermore, these matrices represent
completely symmetric fourth rank tensors, and the relationship between them can be derived in the
following steps: (i) replace the steady-state strain-rate vector in Eq. (29) by stress quantities using Eqs.
(23)-(25); (i) compare the resulting expression with Eq. (28); and (iii) carry out the appropriate
cancellations and, finally, rewrite the equivalent stress in the form of Eq. (17). The final result is ¢"(GT H
G)o=g' G o, thus yielding:

G'HG=G - (31)
. Equation (31) can also be directly verified using Egs. (18) and (30). The quantity G H has the property

that G H [e,] = &,, where the tensor form of ¢, is traceless. H may be considered as a semi-inverse of G
when the operand is deviatoric, which again can be verified by direct substitution.
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Orthotropic Model of Transient Flow.~ The model development assumes that the transient
deformation is incompressible. Although this may not be strictly true, Sinha (1987) argues that transient
flow does not change the volume appreciably and that the assumption is valid for fresh-water
polycrystaliine ice. A second assumption is that material orthotropy can be described by the same set of
parameters, i.e., a, through a;. Similar assumptions are made in creep models for metals (e.g., Hart,
1976; Miller, 1976). Consequently, equivalent measures for the thermodynamic forces and their conjugate
_variables can be defined with respect to the same stress- and strain-rate transformation matrices used in
Egs. (17) and (29).

The relationship between the thermodynamic fluxes and their conjugate variables, i.e., between .;Et
and o4, and between pand BV, are derived from the scalar-valued complex potential of dissipation
expressed in terms of o4 and B'V:

= Jdeq
Op = %o BV (32)
. P,
by (59
. . 3¢‘p
P ="V 5BV (34)

where Y is the constant of proportionality given by (Ziegler and Wehrli, 1987):

- Moot W 1 syt ’
Utp—%p([é?:] 9d+[-é-(§\-/—)]5V) (35)

and od,eqz =3/p ng G o4 as in Eq. (17). From Eqgs. (35) and (32) Vo is determined to be unity. Also,
differentiation in Eq. (33) yields:

B/Eo=2g Sy (36)
Mg =3B [VBVIN o4 o (37)
- and
Sy'=Goy=Go-GR=5"-8g" : (38)

where B in Eq. (37) equals B'/(N+1)"N, Equations (36)-(38) are the counterparts of Egs. (23)-(25) for
steady-flow. The transient strain-rate reverses direction when the applied loading S* is less than the
back-stress measure Sg*. Note that the equation for Sg” is already given by Eq. {13). By premultipiying
Eq. (13) with G and using the identity G H ¢, = ¢, (Eq. (31 }), which is valid for incompressible flow, i.e., & .,
+&yy + 8z =0,an alternative expression can be obtained as given below:
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The parameter A* of Eq. (11) has been replaced by (B/3) AE, where B/3 is the sc‘alar defining the
equivalent strain-rate (see Eq. (29)). It follows that AE is the scalar rigidity-constant linearly relating
equivalent values of the back-stress and transient strain, and E is the Young’s modulus of polycrystalline
ice in the reference direction.

The dissipative process associated with transient-strain satisfies the dissipative inequality (10)
automatically, since [o - p E)A/Bg,]T 'g, -Ip aAp/ ap] p in the inequality is simply O @s can be verified by
noting that in Eq. (35) Vo equals one and the terms within the parenthesis are precisely those in
inequality (10). S?nce ¢tp 2 0, as indicated by Eq. (32), thermodynamic requirements are satisfied.

The evolution equation for the isotropic hardening variable p follows from Egs. (32) and (34):

/e, =k [SloaN+1 (40)

where for € defined as (N+1)/N, k equals N/(N+1)"=. This equation completes the model formulation if an
analytical expression can be found for the free energy Ap(p), since the equation-of-state, Eq. (14), will
then give an analytical relation between B'V (force) and P (conjugate variable). Instead, Shyam Sunder
and Wu (1988) have independently postulated the following rule for isotropic hardening:

B= (HE/G g oq) Ereq (41)

where H is a temperature-independent constant and E-:t,eq is the équivalent transient strain-rate specified
by H as in Eq. (29). The initial value of B, denoted by B,, represents initial hardening introduced by
pre-straining or the presence of residual-stress in a previously undeformed material. The value of B
increases during loading (where loading is defined as an increase in value of the equivalent transient-
strain). If unloading occurs, i.e., the value of the equivalent transient-strain decreases, the sign of Eq. (41)
is reversed and the dimensionless drag-stress decreases.

This formulation for isotropic hardening is motivated by the work of Ashby and Duval (1985) who
constructed master-curves relating dimensionless measures of strain-rate, strain and time using Jacka’'s
(1984) comprehensive creep data on polycrystalline ice. These master-curves are independent of
temperature and applied stress. Shyam Sunder and Wu (1988) have shown that the isofropic hardening
rule given by Eq. (41) satisfies the dimensional requirements identified by Ashby and Duval (1985) for
both constant-stress and constant strain-rate responses. Model predictions using this rule have been
validated against several independent sets of uniaxial creep and recovery data.

A mathematical expression for the free energy Ap(p) corresponding to the isotropic hardening rule
of Eq. (41) can also be reconstructed. However, it is necessary to establish first the relationship between p
and &, .. Noting that GT H G = G (Eq. (31)), it can be shown from Egs. (36)-(38) that:
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ét’eq ley= [cd’eq/(BV)]N (42)
Substituting Eq. (42) in Eq. (40) yields:

/o) (43)

b/éo=k(1:,yeq

which establishes that p is a measure of the accumulated transient-strain. A relationship involving only B,
Band p is then obtained by eliminating Od.0q and 'et,eq from Egs. (41)-(43), i.e.:

(ple,) ™ = k™ BV/HE) (B/¢,) (44)

where m = (N-1)/(N+1). Equation (44) is in effect the evolution equation for p. Integrating Eq. (44) by
separation of variables yields a relation between B and p, i.e.:

B2=B2+2(H EV) k™g, j (p/e,) ™ dt (45)

The desired expression for Ap(p) follows by integrating the thermodynamic force B’V with respect to the
flux p:

PA, .-.j B'Vdp = j {[B2+2(HE/NV) K™ 'eoj (p/Ey) ™dt]"2} V(N+1)N dp (46)

Summary of Model Equations.-- Using tensor notation, the governing equations of the model are

summarized in the following under three categories:

(a) Strain-Rate Decomposition

E=Eq +E+Ey (47)
(b) Equations-of-State (In Rate Form)

o=D:g,=D: E-&-¢) ~ (48)

84=5-R (49)

where

R=(B/3)AEH: &, or Sz =(B/3) AEE, | | (50)

(c) Evolution Equations
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Ey/eo=AS" (51)
€,/€, =My Sy = Ay (8" -Sx" (52)
t’' Fo d =d d =R

B = (FE/ G4 oq) Ereq (53)

The evolution equations are highly nonlinear and are coupled with the equations-of-state.
Numerical integration is required for the solution of the governing model equations, except for the special
case of uniaxial constant-stress loading and no isotropic hardening (Shyam Sunder and Wu, 1988). In
problems involving variable loading histories, the high stiffness of these equations pose severe
constraints on the development of a finite element solution. Shyam Sunder, Wu and Chen (1988) have
used a Newton-Raphson iteration technique combined with the a-method of time integration to ensure
and accelerate convergence. The discretized system of finite element equations are solved with an
incremental-iterative method in which the incremental tangent- stiffness matrix is updated at each iteration
using the BFGS technique (see, e.g., Matthies and Strang, 1979).

4, ESTIMATION OF MODEL PARAMETERS

The model parameters N, E, V,, A, B, and H have been estimated from uniaxial compressive
creep tests on polycrystalline ice (Shyam Sunder and Wu, 1988). The values of the six parameters,
corresponding to the creep data of Jacka (1984) and Sinha (1978), are listed in Table 1. Jacka’s data are
obtained from constant-stress creep tests on isotropic polycrystalline ice with a mean grain size of 1.7
mm, while Sinha’s data are obtained from similar tests on transversely isotropic columnar-grained (S-2)
ice with a mean grain size of 3 mm. The different parameter values reflect the different types of ice that
were tested. The value of the activation energy Q has been estimated to be about 67 KJ mol"! (Gold,
1973; Sinha, 1978).

For pure flow at stresses of engineering interest, the value of the power-law constant N is
approximately three. In a paper reviewing the constants used in Glen’s power law for polycrystalline
glacier ice, Hooke (1981) concludes that in the absence of experimental evidence to the contrary, a value
of three for N is reasonable, irrespective of the "structural state”, e.g., texture. The effect of the structural
state is accounted for by changing the "viscosity". This is the approach adopted here, in which N is taken
to be three and the initial texture or material anisotropy is accounted for by defining appropriate measures
of equivalent stress and strain-rate. Equations (24) and (36) show that the "effective viscosity” in different
directions during steady-state and transient-flow is determined by the orthotropic parameters a, through
ag. As in the case of N, the parameters V,, A, B, and H are determined from uniaxial tests on
polycrystalline ice in the reference direction and are constants.

The orthotropic parameters a, to a; may be estimated from experimental data under steady-flow
conditions. Noting that a, can be set to unity without loss of generality, the remaining constants may be
obtained from five uniaxial (compression) constant-stress creep or constant strain-rate loading as shown
below.
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Consider a Cartesian frame defined on an orthotropic ice sheet. The x-axis is taken to be normal to
the ice sheet which is defined by the y-z plane. The c-axes of the ice crystals are assumed to lie in the y-z
plane and are aligned in the y-direction. The tests are conducted in the three orthogonal directions y, x,
and z respectively, and along the three 45° axes on the y-z, x-y, and z-x planes respectively. Let By to Bs
represent the experimentally determined ratios of the maximum stresses for the latter five tests,
respectively, to the maximum stress in the reference y-direction for tests conducted at the same constant
_strain-rate. In the case of creep tests, the B’s represent inverse ratios of the corresponding minimum
strain-rates raised to the power of 1/N. The orthotropic model parameters are explicitly related to the B's
as shown in the following.

Applying Egs. (23) and (16) to each of the unaxial tests, expressing the equations in terms of the
f's, and solving the resulting equations yields the following equations for the parameters a, to a; (see
Ting and Shyam Sunder, 1985, for additional details):
B,"™-B,"(1-B™
ay=- PP (54)
B,"-B,"(1+B,™

n n l_ L N
ag =- (PO (55)

B,"~B,"(1+B,™
8= B/6 [48,™ - B, (56)
a = B/6 [4B5™ - B, 7] | (57)
ag = B/6 [4B™ - 1] (58)

where n = 2N/(N+1). Note that Mohr’s circle transformations are necessary for the stresses and steady-
state strain-rates when deriving Egs. (56)-(58). These five equations provide a physical interpretation of
the orthotropic model parameters.

For transversely-isotropic ice, i.e., isotropy in the y-z plane, B, =Bs=1and B, = B5. As aresult, a,
=a, = 1, 8, = &, the parameters a, and a, are functions of only By, while a, depends on both B, and B,.
Only two uniaxial tests are required to determine B, and B,: one in the x-direction and one along the 45°
axis on the x-y or z-x planes. |

The necessary experimental data on orthotropic or transversely-isotropic fresh-water polycrystalline
ice under pure flow (ductile) conditions for determining these parameters is not readily available.
However, estimates for the parameter ranges in the case of B, - B, may be obtained from tests conducted
under non-ideal conditions. For example, in the case of freshwater polycrystalline (S-2) ice B4, the ratio of
out-of-plane' to in-plane maximum stress, is around two at strain-rates involving some brittle behavior
(Carter and Michel, 1971). The values of B, to B, have been reported for sea ice (see, e.g., Richter-
Menge, 1987; Sinha, 1983; Vittoratos, 1979; Wang, 1979). Typical ranges are 2 - 5 for B4, 0.50 - 0.95 for
Bo, and 0.25 - 0.60 for B,.

Plane-strain compression tests on transversely isotropic ice such as those conducted by Frederking
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(1977) may also be considered for determining B,. For his type A tests, strains in the z-direction are
constrained to zero and stresses are applied in the y-direction. The ratio vy, of the plane-strain maximum
stress to the unconfined maximum stress at the same strain-rate can be derived following the procedure
used for Egs. (54) - (58), i.e.:

_ 4B1Zn 1n .
Yz - [4‘31"_'] (59)

This equation predicts v, to vary between 2.1 to 5.1 for values of B, ranging from 2 to 5, and N = 3.
Frederking’s experiments, although involving brittle behavior, yield v, values close to two at high strain-
rates and to five at low strain-rates. In the type B tests, strains in the x-direction are constrained to zero
while stresses are again applied in the y-direction. In this case, the stress ratio y, can be expressed as:

- 1 i/n
=l (60

Since B, is generally greatef than one, vy, will be less than approximately 1.2 for N = 3. The equation
predicts vy, values from 1.01 to 1.06 for typical values of B,. These results show that for transversely-
isotrapic ice the type A test is almost a direct measure of B,, while the type B test is insensitive to typical
variations in B, and consequently is not a robust test for determining §,.

5. CONCLUSIONS

A multiaxial differential model of flow in orthotropic polycrystaliine ice is presented in this paper.
The derivation of the constitutive equations is based on thermodynamics with internal state variables.
These internal variables are taken to represent structural changes on the microscale associated with
isotropic and kinematic hardening. Use of the dissipative inequality identifies the stress tensor as the
force driving steady-state viscous flow and a stress-difference tensor, equal to the stress tensor minus the
elastic back-stress tensor associated with kinematic hardening, as the force driving transient-flow in the
material.

The evolution equations for the steady-state and transient deformation tensors are derived from
independent potential functions characterizing the dissipation process by imposing normality with respect
to the appropriate conjugate forces. Dissipation during transient-flow is accompanied by energy storage
resulting from internal structural changes. The kinematic hardening variable is identified as the transient-
strain tensor and is linearly related to the back-stress. The flux quantity corresponding to isotropic
hardening is obtained from the same complex potential used in deriving the evolution of the transient
deformation tensor by imposing normality with respect to a scalar drag-stress. It is shown that this flux is '
nonlinearly related to the equivalent transient strain-rate.

The model uses five parameters to represent the orthotropic texture of ice during incompressible
‘flow. These parameters may be determined from either constant-stress creep or constant strain-rate tests
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under steady-flow conditions. Conventional uniaxial compression testing is sufficient to determine these
parameters. In the case of transversely-isotropic ice, two of the three independent parameters may also
be determined from plane-strain compression tests, i.e., the type A tests of Frederking (1977).

The flow model presented in this paper serves as a foundation for a rate- and pressure-sensitive
damage model that can describe the effects of distributed microcracking in polycrystalline ice. Such a
model based on defining a damage tensor as an additional internal variable is presented by Wu and
Shyam Sunder (1989). '

6. ACKNOWLEDGEMENTS

The authors would fike to acknowledge financial support from the U.S. Army Research Office
through MIT’s Program for Advanced Construction Technology; BP America through MIT's Center for
Scientific Excellence in Offshore Engineering; the MIT-Industry Arctic Research Consortium; and the U.S.
Department of the Interior, Minerals Management Service.

REFERENCES

Ashby, M.F. and Duval, P. {1985), The Creep of Polycrystalline Ice, Cold Regions Science and
Technology, 11, 285-300.

Brown, S.B., Kim, K.H. and Anand, L. (1987), An Internal Variable Constitutive Model for Hot Working of
Metals, International Journal of Plasticity, To Appear.

Carter, D. and Michel, B. (1971), Laws and Mechanisms of Apparent Brittle Fracture of River and Lake
ice, Faculte des Sciences, Universite Laval, Report S-22.

Chaboche, J.L. and Rousselier, G. (1983), On the Plastic and Viscoplastic Constitutive Equations - Part 1.
Rules Developed with Internal Variable Concept, Journal of Pressure Vessel Technology, Vol. 105,
153-164.

Coleman, B.D. andd Gurtin, M.E. (1967), Thermodynamics with Internal State Variables, Journal of
Chemical Physics, Vol. 47, No. 2, 597-613.

Frederking, R. (1977), Plane-Strain Compressive Strength of Columnar-Grained and Granular Snow-Ice,
Journal of Glaciology, Vol. 18, No. 80, 505-516.

Glen, J.W. (1955), The Creep of Polycrystalline Ice, Proceedings of the Royal Society of London, Ser. A,
Vol. 228, No. 1175, 519-538.

Gold, L.W. {(1973), Activation Energy for Creep of Cdlumnar—Grained ice, in Whalley, E., Jones, S.J. and
Gold, L.W. (Eds.), Physic and Chemistry of Ice, Roy. Soc. Canada, Ottawa, 362-364.

Gold, L.W. (1977), Engineering Properties of Fresh Water Ice, Journal of Glaciology, Vol. 19, No. 81,
197-212.

Gurtin, M.E., Williams, W.O. and Suliciu, 1. {198’0), On Rate Type Constitutive Equations and the Energy
of Viscoelastic and Viscoplastic Materials, Intemational Journal of Solids and Structures, Vol. 186,
607-617.

Hart, E.W. (1976), Constitutive Relations for the Nonelastic Deformation of Metals, Journal of Engineering
Materials and Technology, 96, 193-202.




18

Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, London.

Hobbs, P.V. (1974), Ice Physics, Clarendon Press, Oxford.

Hooke, R.L. (1981), Flow Law for Polycrystalline Ice in Glaciers: Comparison of Theoretical Predictions,
Laboratory Data, and Field Measurements, Reviews of Geophysics and Space Physics, Vol. 19, No. 4,
664-672.

llankamban, R. and Krajcinovic, D. (1987), A Constitutive Theory for Progressively Deteriorating Brittle
Solids, International Journal of Solids and Structures, Vol. 23, No. 11, 1521-1534.

Jacka, T.H. (1984), The Time and Strain Required for the Development of Minimum Strain Rates in Ice,
Cold Regions Science and Technology, Vol. 8, 261-268.

Lemaitre, J. (1987), Plasticity and Damage under Random Loading, in Proceedings of the Tenth U.S,
National Congress of Applied Mechanics, Lamb, J.P. (Ed.), ASME, 125-134.

Matthies, H. and Strang, G. (1979), The Solution of Nonlinear Finite Element Equations, International
Journal for Numerical Methods in Engineering, Vol. 14, 1613-1626.

Mellor, M. (1980), Mechanical Properties of Polycrystalline Ice, in Proceedings of the IUTAM Symposium
on the Physics and Mechanics of Ice, Tryde, P. (Ed.), Springer, 217-245.

Mellor, M. and Cole, D.M. (1982), Deformation and Failure of Ice under Constant Stress or Constant
Strain-Rate, Cold Regions Science and Technology, Vol. 5, 201-219.

Mellor, M. and Cole, D.M. (1983), Stress/Strain/Time Relations for lce under Uniaxial Compression, Cold
Regions Science and Technology, Vol. 6, 207-230.

Michel, B. and Ramseier, R.O. (1971), Classification of River and Lake Ice, Canadian Geotechnical
Journal, Vol. 8, 36-45.

Miller, A. (1976), An Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation: Part 1 -
Equations Development and Analytical Procedures, Journal of Engineering Materials and Technology, 96,
97-104.

Onat, E.T. and Leckie, F.A. (1988), Representation of Mechanical Behavior in the Presence of Changing
Internal Structure, Journal of Applied Mechanics, Vol. 55, 1-10.

Palmer, A.C. (1967), Creep-Velocity Bounds and Glacier-Flow Problems, Journal of Glaciology, Vol. 6,
No. 46, 479-488.

Pariseau, W.G. (1968), Piasticity Theory for Anisotropic Rocks and Soils, Proc. 10th Symp. Rock Mech.,
Austin, TX, 267-295.

Ponter, AR.S. et al. (1 983), The Forces Exerted by a Moving Ice Sheet on an Offshore Structure: Part |
The Creep Mode, Cold Regions Science and Technology, Vol. 8, 109-118.

Rabotnov, Yu. N. (1969), Creep Problems in Structural Members, English Translation by Leckie, F.A.,
North-Holland Publishing Company.

Reinicke, K.M. and Ralston, T.D. (1977), Plastic Limit Analysis with an Anisotropic, Parabolic Yield
Function, International Journal of Rock Mechanics, Mining Sciences and Geomechanics, 14, 147-154,

Richter-Menge, J.A. (1987), Confined Compressive Strength of Horizontal First-Year Sea Ice Samples, in
Proceedings of the Sixth International Offshore Mechanics and Arctic Engineering Symposium, Vol. 1V,
197-207. :

Schulson, E.M. (1987), The Fracture of ice |h, Journal de Physique, Colloque C1, Supplement au n° 3,
Tome 48, 207-218.




19

Schulson. EM,, Lim, P.N., and Lee, R.W. (1984), A Brittle to Ductile Transition in lce under Tension,
Philosophical Magazine A, Vol. 49, No. 3, 353-363.

Shyam Sunder, S., Ganguly, J. and Ting, S.-K. (1987), Anisotropic Sea Ice Indentation in the Creeping
Mode, Journal of Offshore Mechanics and Arctic Engineering, Vol. 103, No. 2, 211-219.

Shyam Sunder, S. and Ting, S.-K. (1985), Ductile to Brittle Transition in Sea Ice under Uniaxial Loading,
Proceedings, 8th International Conference on Port and Ocean Engineering under Arctic Conditions
Narssarssuaq, Greenland, September 7-14, Vol. 2, 656-666.

Shyam Sunder, S. and Wu, M.S. (1988), A Differential Flow Model for Polycrystalline Ice, Cold Regions
Science and Technology, In Press.

Shyam Sunder, S., Wu, M.S. and Chen, C.W. (1988), Numerical Modeling of Rate-Dependent Processes
During lce-Structure Interaction, Submitted for Publication.

Sinha, N.K. (1978), Rheology of Columnar-Grained lce, Experimental Mechanics, 18(12), 464-470.

Sinha, N.K. (1979), Grain-Boundary Sliding in Polycrystalline Materials, Philosophical Magazine A, Vol.
40, No. 6, 825-842.

Sinha, N.K. (1982), Delayed Elastic Strain Criterion for First Cracks in Ice, in Proceedings IUTAM
Symposium on the Deformation and Failure of Granular Materials, Vermeer, P.A. and Luger, H.J. (Eds.),
A.A. Balkema, Rotterdam, 323-330.

Sinha, N.K. {(1983), Field Tests on Rate Sensitivity of Vertical Strength and Deformation of First-Year
Columnar-Grained Ice, in Proceedings, 7th International Conference on Port and Ocean Engineering
under Arctic Conditions , Trondheim, Norway, 651-665.

Sinha, N.K. (1987), Effective Poisson’s Ratio of Isotropic Ice, Proceedings of the Sixth International
Offshore Mechanics and Arctic Engineering Symposium, Vol. 1V, 189-195,

Sinha, N.K., Timco, G.W. and Frederking, R. (1987), Recent Advances in Ice Mechanics in Canada, in
Chung, J.S., Hallam, S.D., Maatanen, M., Sinha, N.K. and Sodhi, D.S. (Eds.), Advances in Ice
Mechanics - 1987, ASME, Offshore Mechanics and Arctic Engineering Symposium Committee, Houston,
Texas, 15-35.

Sjolind, S-G. (1987), A Constitutive Model for Ice as a Damaging Visco-Elastic Material, Cold Regions
Science and Technology, Vol. 41, 247-262.

Ting, S.-K. and Shyam Sunder, S. (1985), Constitutive Modeling of Sea lce with Applications to
indentation Problems, CSEOE Research Report No. 3, Department of Civil Engineering, Massachusetts
Institute of Technology, 255 p.

Vittoratos, E.S. (1979), Existence of Oriented Sea Ice by the Mackenzie Delta, in Proceedings, 5th
International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway,
643-650. '

Wang, Y.S. (1979), Crystallographic Studies and Strength Tests of Field Ice in the Alaskan Beaufort Sea,
in Proceedings, 5th International Conference on Port and Ocean Engineering under Arctic Conditions,
Trondheim, Norway, 651-665.

Wu, M.S. and Shyam Sunder, S. (1989), A Rate- and Pressure-Sensitive Damage Model for
Polycrystalline Ice, In Preparation.

Ziegler, H. (1983), An Introduction to Thermomechanics, 2nd Ed., North-Holland Publishing Company,
Amsterdam.

Ziegler, H. and Wehrli, C. (1987), The Derivation of Constitutive Equations from the Free Energy and the



20

Dissipation Function, Advances in Applied Mechanics, Vol. 25, Wu, T.Y. and Hutchinson, J.W. (Eds.),
Academic Press, Inc., 183-238.




Table 1. Parameters for Uniaxial Constitutive Model (From Shyam Sunder and Wu, 1988).

Parameter Value Determined from Data of
Jacka (1984) Sinha(1978)
E 9.5 GPa 9.5 GPa
N 3 3
Vo 6.59 KPa 6.59 KPa
A 0.021 0.495
B, 0286 0.087

H 0.020 0.454




